DEFENSE-RELATED VISION FUNDING

Vision Research Program Funding Scorecard

FY2017: VRP Finalizing Awards
The VRP Program Committee is making final decisions on FY2017 grants, with the program funded for the first time at $15 million. NAEVR will post awardee abstracts on its Web site when released by CDMRP.

FY2018: VRP Finalizing Program Announcement
The VRP Program Committee expects to issue the Program Announcement in the July/August timeframe. For the second year, the VRP was funded at a level of $15 million.

FY2019: House Appropriation Bill Funds VRP at $20 Million
For the first time, Congress proposed FY2019 VRP funding at $20 million—$5 million more than in each FY2017 and 2018—per the House Defense Appropriations bill which passed on June 28. The Senate’s bill, reported out of the Senate Appropriations Committee on June 28, is silent on most funding levels within the Defense Health Programs section. After each chamber passes its respective bill they will be conferenced, with the Senate usually accepting the House bill’s funding levels. NAEVR had requested the $20 million funding level, including the following updated information in its advocacy messaging:

• With assistance from VRP Vision Program Manager Tian Wang, PhD, NAEVR revised the number of published papers that emerged from VRP funding since FY2009 to 153 and patents received/applied for to 15. NAEVR emphasized that VRP-funded research has been instrumental to the development of the field of military eye trauma care.

• An updated $45.5 billion cost of deployment-related eye injuries and blindness in the 2000-2017 timeframe, as estimated by AEVR consultant Kevin Frick, PhD (Johns Hopkins Carey School of Business) in his 2017 update of NAEVR’s 2012 Cost of Military Eye Injury Study. Of that total, $44.4 billion reflects the present value of a lifetime of long-term benefits, lost wages, and family care. (The 2017 AEVR update is being prepared as a manuscript for journal submission in 2018.)

• The VRP Program Announcement in the July/August timeframe. For the second year, the VRP was funded at a level of $15 million.

• An updated $45.5 billion cost of deployment-related eye injuries and blindness in the 2000-2017 timeframe, as estimated by AEVR consultant Kevin Frick, PhD (Johns Hopkins Carey School of Business) in his 2017 update of NAEVR’s 2012 Cost of Military Eye Injury Study. Of that total, $44.4 billion reflects the present value of a lifetime of long-term benefits, lost wages, and family care. (The 2017 AEVR update is being prepared as a manuscript for journal submission in 2018.)

• An updated $45.5 billion cost of deployment-related eye injuries and blindness in the 2000-2017 timeframe, as estimated by AEVR consultant Kevin Frick, PhD (Johns Hopkins Carey School of Business) in his 2017 update of NAEVR’s 2012 Cost of Military Eye Injury Study. Of that total, $44.4 billion reflects the present value of a lifetime of long-term benefits, lost wages, and family care. (The 2017 AEVR update is being prepared as a manuscript for journal submission in 2018.)

VRP Holds Stakeholders Meeting
On April 17, NAEVR’s James Jorkasky and David Epstein were guest attendees at the VRP Program Panel’s “Stakeholders” meeting. The Panel heard from speakers describing the status of research funded by other federal institutions (NEI, Department of Veterans Affairs) and by private vision research funding foundations, as well as the economic cost of military eye injuries and vision loss to society. The Panel then reviewed the adequacy of the current DOD-identified vision trauma research gaps in advance of developing the FY2018 Program Announcement.

Steven Fliesler, PhD (SUNY-Buffalo/VA Medical Center-Buffalo), the Research Stakeholder Representative to the VRP Program Panel, spoke about the state of science in vision research. Dr. Fliesler is the 2018-2019 President of the ARVO Board of Trustees and a NAEVR/AEVR Director.

DOD Funded Researcher Examines Whole Eye Transplantation
On March 29, AEVR hosted its ninth Defense-related Vision Research Congressional Briefing entitled Whole Eye Transplantation—From Experimental Model to Clinical Translation, co-sponsored by RPB, ARVO, and Blinded Veterans Association (BVA). The Briefing featured clinician-scientist Dr. Washington, MD, of the VA Pittsburgh Healthcare System and was recently named Director of a newly-established interdisciplinary research program that focuses on the science of Whole Eye Transplantation (WET).

Funded by an NIH training grant originally at the Starzl Transplant Institute at the University of Pittsburgh, Dr. Washington began working with rodents as an animal model for facial transplants, and that work formed the basis for her later work on the DOD-funded WET—the goal of which is to restore form and function of a transplanted eye. Although such efforts date back to the 1880s, they have been unsuccessful due to three major impediments: inadequate blood flow to keep the organ alive; immune system rejection of the transplanted tissue; and lack of nerve function past the point of where the optic nerve was severed. Overcoming these three challenges has been the focus of Dr. Washington’s research, which has had success in meeting the first two. But if a transplanted eye is going to restore vision, it is the third barrier that is essential to overcome. Her team is testing a number of different techniques to preserve the optic nerves and encourage them to regenerate. One therapy has introduced the use of a “wrap” infused with special drugs that holds the two severed ends of the optic nerve together to allow the two ends to knit to the other. Also being evaluated for effectiveness are gene therapy strategies, which tap into the innate ability of our body to regenerate after injury.

Visi...